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Abstract
Starting with the Dirac equation in the extreme Kerr metric we derive an
integral representation for the propagator of solutions of the Cauchy problem
with initial data in the class of smooth compactly supported functions.

PACS numbers: 04.62.+v, 04.70.−s

1. Introduction

One may think that the formation of an extreme Kerr black hole (EKBH) is of only academic
interest but this is not so. Relativistic Dyson rings, i.e. uniformly rotating, homogeneous and
axisymmetric relativistic fluid bodies with a toroidal shape admit a continuous transition to
an EKBH if a fixed ratio r1/r2 > 0.5613 of inner to outer coordinate radius is prescribed
and the gravitational mass gradually increases for fixed mass-density [1]. Concerning the
existence of such rings based on numerical computations we refer to [2, 3]. Let us recall that
relativistic Dyson rings could emerge from astrophysical scenarios like stellar core-collapses
with high angular momentum [4] or they might simply be present in central regions of
galaxies. Moreover, it has been proved that the only possible candidate for a black hole limit
for stationary and axisymmetric, uniformly rotating perfect fluid bodies with a cold equation
of state as well as for isentropic stellar models with a non-zero temperature is the EKBH [5].
Hence, we cannot a priori exclude that EKBHs play no role in astrophysics and in view of the
above consideration it is of interest to study the Dirac equation in an extreme Kerr manifold.

It is surprising that there are no analytical studies concerning the propagation of Dirac
fields outside an extreme Kerr black hole. With the present work we hope to fill this gap.
Here, we prove for the first time the completeness of the Chandrasekhar ansatz for the Dirac
equation in an EKBH from which an integral representation of the Dirac propagator can be
obtained quite immediately.

An integral representation for the Dirac propagator in the non-extreme Kerr Newman
metric has been derived in [6]. Although we use the same strategy as in [6] to write the
Dirac equation in a Hamiltonian form the method used in our work to compute the Dirac
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propagator is more general and applies to a different situation. First, the propagator obtained
in [6] has been derived under the conditions that the black hole is not extreme. In fact, in the
extreme case you have to take into account the presence of bound states which are instead
absent in the non-extreme case. Moreover, the method we used to derive the propagator is
fundamentally different from that employed in [6]. In fact, we first show the completeness
of the Chandrasekhar ansatz and from this we derive the integral representation for the Dirac
propagator. The main advantage of our approach is that we do not need to consider the
Hamiltonian operator in a finite box in order to construct the spectral measure as in [6].
Furthermore, the method used in [6] cannot be applied as it is without introducing some
modifications.

The issue of the possibility of obtaining our results as a special limit of the non-extremal
case is a very interesting one but it is not obvious at all how our result could be derived as a
carefully extracted limit of the general case since the Dirac operators and the scalar products
are defined on different Hilbert spaces. It is probably necessary to find an ad hoc notion of limit
in a kind of parameterized family of Hilbert spaces in order to give a rigorous definition of the
transition of the Dirac propagator from a non-extreme to an extreme black hole. Moreover, the
ODEs arising from the Dirac equation after separation of variables in these two cases have a
very different structure. Considering that the Cauchy horizon coincides with the event horizon
in the extreme Kerr metric it would be interesting to find out how the confluence process from
the radial Dirac equation in the non-extreme case to the extreme one depends on the black hole
parameters. This approach might reveal some information to construct the transition from a
non-extreme to an extreme black hole. We reserve the study of this limiting process for future
investigations.

The rest of the paper is organized as follows. In section 2 we shortly derive the Dirac
equation in the EKBH. After the introduction of the so-called Chandrasekhar ansatz we
compute the scalar product with respect to which the Dirac Hamiltonian is formally self-
adjoint. Section 3 is devoted to proving the completeness of the Chandrasekhar ansatz
(see theorem 2.1) which in turn allows us to derive the integral representation for the Dirac
propagator as given by (3.5).

2. The Dirac equation in the extreme Kerr metric

In Boyer–Lindquist coordinates (t, r, ϑ, ϕ) with r > 0, 0 � ϑ � π, 0 � ϕ < 2π the extreme
Kerr metric can be easily derived from the Kerr metric [7] by setting the Kerr parameter
a = M . Its form is given by

ds2 =
(

1 − 2Mr

�

)
dt2 +

4M2r sin2 ϑ

�
dt dϕ − �

�
dr2 − � dϑ2 − (r2 + M2)2 sin2 ϑ

�̃

�
dϕ2

(2.1)

with

� := �(r, ϑ) = r2 + M2 cos2 ϑ, � := �(r) = (r − M)2

and

�̃ := �̃(r, ϑ) = 1 − M2γ 2(r) sin2 ϑ, γ (r) := r − M

r2 + M2

where M is the mass of a spinning black hole with angular momentum J = M2. Note that the
area of an EKBH is simply A = 8πJ . Since the equation � = 0 has a double root at r0 := M

the Cauchy horizon and the event horizon coincide. Finally, note that �̃ > 0 for all r > M

and ϑ ∈ [0, π ].



The Dirac propagator in the extreme Kerr metric 13445

According to Penrose and Rindler [8] the Dirac equation coupled to a general gravitational
field V is given in terms of two-component spinors (φA, χA

′
) by(∇A

A
′ − ieV A

A
′
)
φA = me√

2
χA

′ ,
(∇A

′

A − ieV A
′

A

)
χA

′ = me√
2
φA

where we used Planck units h̄ = c = G = 1. Furthermore, ∇AA
′ is the symbol for covariant

differentiation, e is the charge or coupling constant of the Dirac particle to the vector field
V and me is the particle mass. The Dirac equation in the Kerr geometry was computed
and separated by Chandrasekhar [9] with the help of the Kinnersley tetrad [10]. Since the
derivation and separation of the Dirac equation in the extreme Kerr geometry follows with
minor changes from section 2 in [11] we will limit us to give here only the main results. In
view of the separation of the Dirac equation we choose to work with the Carter tetrad [12]. A
Dirac spinor ψ = ψ(t, r, ϑ, ϕ) ∈ C

4 satisfies in the exterior region r ∈ (M,∞) of an extreme
Kerr black hole the following equation:

Wψ = (
W(t,r,ϕ) + W(t,ϑ,ϕ)

)
ψ = 0 (2.2)

where

W(t,r,ϕ) =

⎛⎜⎜⎜⎝
imer 0

√
�D+ 0

0 −imer 0
√

�D−√
�D− 0 −imer 0
0

√
�D+ 0 imer

⎞⎟⎟⎟⎠ , (2.3)

W(t,ϑ,ϕ) =

⎛⎜⎜⎝
−Mme cos ϑ 0 0 L+

0 Mme cos ϑ −L− 0
0 L+ −Mme cos ϑ 0

−L− 0 0 Mme cos ϑ

⎞⎟⎟⎠ (2.4)

with D± and L± defined by

D± = ∂

∂r
∓ 1

�

[
(r2 + M2)

∂

∂t
+ M

∂

∂ϕ

]
, (2.5)

L± = ∂

∂ϑ
+

1

2
cot ϑ ∓ i

(
M sin ϑ

∂

∂t
+ csc ϑ

∂

∂ϕ

)
. (2.6)

By means of the Chandrasekhar ansatz [9, 11]

ψ(t, r, ϑ, ϕ) = eiωt eiκϕ

⎛⎜⎜⎝
R−(r)S−(ϑ)

R+(r)S+(ϑ)

R+(r)S−(ϑ)

R−(r)S+(ϑ)

⎞⎟⎟⎠ , κ := k +
1

2

where ω and k ∈ Z denote the energy of the particle and its azimuthal quantum number
respectively, the Dirac equation decouples into the following systems of linear first-order
differential equations for the radial R± and angular components S± of the spinor ψ,( √

�D̂− −imer − λ

imer − λ
√

�D̂+

)(
R−
R+

)
= 0, (2.7)

( −L̂− λ + Mme cos θ

λ − Mme cos θ L̂+

)(
S−
S+

)
= 0 (2.8)
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where

D̂± = d

dr
∓ i

K(r)

�
, K(r) = ω(r2 + M2) + κM, (2.9)

L̂± = d

dϑ
+

1

2
cot ϑ ± Q(ϑ), Q(ϑ) = Mω sin ϑ + κ csc ϑ (2.10)

and λ is a separation constant depending on k and ω. Let u ∈ R be the tortoise coordinate
defined by du/dr = (r2 + M2)/�. By rearranging (2.2) we can write the Dirac equation in
the Hamiltonian form

i
∂ψ

∂t
= Hψ, H = H0 + V (u, ϑ) (2.11)

with

H0 = A(u, ϑ)

⎡⎢⎢⎣
⎛⎜⎜⎝

−E− 0 0 0
0 E+ 0 0
0 0 E+ 0
0 0 0 −E−

⎞⎟⎟⎠ +

⎛⎜⎜⎝
0 −M+ 0 0

−M− 0 0 0
0 0 0 M+

0 0 M− 0

⎞⎟⎟⎠
⎤⎥⎥⎦ , (2.12)

and

A(u, ϑ) = 1

�̃

[
114 − Mγ (u) sin ϑ

(
σ2 0
0 −σ2

)]
, (2.13)

V (u, ϑ) = meA(u, ϑ)γ (u)

⎛⎝ 0 112
ρ̃

112

ρ̃
0

⎞⎠ (2.14)

where σ2 is a Pauli matrix, ρ̃ = −(r − iM cos ϑ)−1 and

E± = i

(
∂

∂u
∓ M

r2 + M2

∂

∂ϕ

)
, M± = iγ (u)

(
∂

∂ϑ
+

1

2
cot ϑ ∓ i csc ϑ

∂

∂ϕ

)
satisfying E± = −E± and M± = −M∓. Notice that the matrix contained in the square
brackets in (2.13) is hermitian. Similarly as in section 3 in [11] we can construct a positive
scalar product

〈ψ |φ〉 =
∫ +∞

−∞
du

∫ 1

−1
d(cos ϑ)

∫ 2π

0
dϕ

√
�̃ψφ (2.15)

with respect to which the Hamiltonian H acting on the spinor ψ on the hypersurface
t = t0 with t0 constant is formally self-adjoint. In the following we consider the

Hilbert space H = L2(�)4 := L2(�,

√
�̃ du d(cos ϑ) dϕ)4 consisting of wavefunctions

ψ : � := R × S2 → C
4 together with the positive scalar product (2.15). As in [11], it can be

shown that the Hamiltonian H defined on C∞
0 (�)4 is essentially self-adjoint and has a unique

self-adjoint extension. System (2.8) can be brought in the so-called Dirac form

(US)(ϑ) :=
(

0 1
−1 0

)
dS

dϑ
+

⎛⎜⎝ −Mme cos ϑ − κ

sin ϑ
− Mω sin ϑ

− κ

sin ϑ
− Mω sin ϑ Mme cos ϑ

⎞⎟⎠ S = λS

with S(ϑ) = √
sin ϑ(S−(ϑ), S+(ϑ))T and ϑ ∈ (0, π). In L2(0, π)2 the angular operator U

with domain D(U) = C∞
0 (0, π)2 is essentially self-adjoint, its spectrum is discrete and consists
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of simple eigenvalues, i.e. λj < λj+1 for every j ∈ Z\{0}. Moreover, the eigenvalues depend
smoothly on ω. Furthermore, the functions ei(k+ 1

2 )ϕ are eigenfunctions of the z-component
of the total angular momentum operator Ĵz with eigenvalues −(

k + 1
2

)
with k ∈ Z. Since

energy, generalized squared total angular momentum and the z-component of the total angular
momentum form a set of commuting observables {H, Ĵ 2, Ĵz} we will label the generalized
states ψ ∈ H by ψ

kj
ω . Finally, for every k ∈ Z and j ∈ Z\{0} the set

{
Y

kj
ω (ϑ, ϕ)

}
with

Y kj
ω (ϑ, ϕ) =

(
Y

kj
ω,−(ϑ, ϕ)

Y
kj
ω,+(ϑ, ϕ)

)
= 1√

2π

(
S

kj
ω,−(ϑ)

S
kj
ω,+(ϑ)

)
ei(k+ 1

2 )ϕ (2.16)

is a complete orthonormal basis for L2(S
2)2 [11]. Let σ(H) ⊆ R denote the spectrum of the

self-adjoint Hamiltonian operator H. We state now the theorem on the completeness of the
Chandrasekhar ansatz.

Theorem 2.1. For every ψ ∈ C∞
0 (�)4

ψ(0, x) =
∫

σ(H)

∑
j∈Z\{0}

∑
k∈Z

〈
ψkj

ω

∣∣ψω

〉
ψkj

ω (x) dµω, ψkj
ω (x) =

⎛⎜⎜⎜⎜⎜⎝
R

kj
ω,−(u)Y

kj
ω,−(ϑ, ϕ)

R
kj
ω,+(u)Y

kj
ω,+(ϑ, ϕ)

R
kj
ω,+(u)Y

kj
ω,−(ϑ, ϕ)

R
kj
ω,−(u)Y

kj
ω,+(ϑ, ϕ)

⎞⎟⎟⎟⎟⎟⎠ (2.17)

where the scalar product 〈·|·〉 is given by (2.15), µω is a Borel measure on σ(H) ⊆ R and
x = (u, ϑ, ϕ).

Proof. We show first that it is possible to construct isometric operators

Ŵk,j : C∞
0 (R)2 −→ C∞

0 (�)4,

such that

Rkj
ω (u) =

(
R

kj
ω,−(u)

R
kj
ω,+(u)

)
�−→ A(u, ϑ)

⎛⎜⎜⎜⎜⎜⎝
R

kj
ω,−(u)Y

kj
ω,−(ϑ, ϕ)

R
kj
ω,+(u)Y

kj
ω,+(ϑ, ϕ)

R
kj
ω,+(u)Y

kj
ω,−(ϑ, ϕ)

R
kj
ω,−(u)Y

kj
ω,+(ϑ, ϕ)

⎞⎟⎟⎟⎟⎟⎠
with some function A to be determined and Y

kj
ω,± given by (2.16). Indeed, since the angular

eigenfunctions Y
kj
ω are normalized, we have

∥∥Rkj
ω

∥∥2
L2(R)2 =

∫ +∞

−∞
du

∫ 1

−1
d(cos ϑ)

∫ 2π

0
dϕψ

kj

ω ψkj
ω , ψkj

ω =

⎛⎜⎜⎜⎜⎜⎝
R

kj
ω,−Y

kj
ω,−

R
kj
ω,+Y

kj
ω,+

R
kj
ω,+Y

kj
ω,−

R
kj
ω,−Y

kj
ω,+

⎞⎟⎟⎟⎟⎟⎠
and by choosing A = (�̃)−

1
4 it results that

∥∥Rkj
ω

∥∥2
L2(R)2 = ∥∥Ŵk,j

(
R

kj
ω

)∥∥2
L2(�)4 . By means of

the isometric operators Ŵk,j we can now introduce for every ω ∈ σ(H) an auxiliary separable
Hilbert space h(ω) as follows:

h(ω) =
⊕
j∈Z\0

⊕
k∈Z

hk,j , hk,j = Ŵk,j

(
C∞

0 (R)2
)
.
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According to the expansion theorem (e.g. theorem 3.7 in [14]) every element ψω in h(ω) can
be written as

ψω =
∑

j∈Z\0

∑
k∈Z

〈
ψkj

ω

∣∣ψω

〉
ψkj

ω . (2.18)

Finally, the direct integral of Hilbert spaces

H =
∫

σ(H)

⊕
j∈Z\0

⊕
k∈Z

hk,j dµω (2.19)

with µω a Borel measure on σ(H) ⊆ R is defined (see ch. 1, section 5.1 in [15]) as the Hilbert
space of vector-valued functions ψω taking values in the auxiliary Hilbert spaces h(ω). By
definition H can be written as in (2.19) if there exists a unitary mapping F of H onto H. Now,
since the Hamiltonian H is self-adjoint, the spectral representation theorem (e.g. theorem 7.18
in [14]) implies the existence of such an isomorphism F and this completes the proof. �

At this point note that in general for self-adjoint operators σ(H) = σp(H) ∪ σc(H) where
σp(H) and σc(H) denote the point spectrum and the continuous spectrum, respectively [16].
Furthermore, we distinguish between points of σp(H) which are isolated or non-isolated as
points of σ(H). The former constitutes the discrete spectrum σd(H) which is defined as the
subset of σ(H) for which the resolvent is closed. The latter is called the point continuous
spectrum σpc(H). In the next section we investigate the spectrum of the Hamiltonian H in
order to compute the measure µω entering in (2.17).

3. The Dirac propagator

According to theorem 2.1 every representative element ψω = (Fψ)(ω) of the element ψ ∈ H
in the decomposition (2.19) can be written in the form given by (2.18). Hence, in the study
of σ(H) we are allowed to focus our analysis on the radial system (2.7). As a consequence,
we just need to investigate the spectrum of the differential operator R associated with the
formal differential system (2.7) after it is brought into the form of a Dirac system of ordinary
differential equations. This can be achieved in two steps. First, we set R−(r) = F(r) + iG(r)

and R+(r) = F(r) − iG(r) in (2.7) and obtain the following system:

dF

dr
= λ

r − M
F +

[
K(r)

(r − M)2
+

mer

r − M

]
G,

dG

dr
= − λ

r − M
G +

[
− K(r)

(r − M)2
+

mer

r − M

]
F.

By introducing the tortoise coordinate u ∈ R defined in section 2 the above equations give the
following first-order system, namely

d�

du
=
(

λ�� ω + κ� + mer(u)��

−ω − κ� + mer(u)�� −λ��

)
� (3.1)

with � := (F,G)T and

� := �(u) = M

r(u)2 + M2
, �� := ��(u) := r(u)

r2(u) + M2
− �(u).

For ease in notation we shall write r instead of r(u) when no risk of confusion arises. Finally,
we rewrite (3.1) as follows:(

0 −1
1 0

)
d�

du
+

(−κ� − mer�� −λ��

−λ�� −κ� + mer��

)
� = ω�. (3.2)
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Notice that the value of � at the event horizon is simply the black hole angular velocity
�H = 1/(2M). Moreover, �� → 0 for u → −∞. Let us now consider the formal
differential operator

τ :=
(

0 −1
1 0

)
d

du
−
(

κ� + mer�� λ��

λ�� κ� − mer��

)
(3.3)

in the Hilbert space L2(R, du)2. Theorem 6.8 in [17] implies that τ is in the limit point case
(l.p.c.) at ±∞. Hence, the deficiency indices (γ+, γ−) of τ are (0, 0), its deficiency numbers
are (γ−∞, γ∞) = (1, 1) and τ admits only one self-adjoint extension T with D(T ) = C∞

0 (R)2

(see ch. 4, p 53 and theorem 5.7-8 in [17]).

Theorem 3.1. Let T with D(T ) = C∞
0 (R)2 be the self-adjoint extension of the formal

differential operator τ defined in (3.3). Then, σe(T ) = R = σ(T ) where σe(·) denotes the
essential spectrum.

Proof. In order to determine the essential spectrum of T we apply the so-called decomposition
method due to Neumark [18]. For this purpose let T− and T+ be self-adjoint extensions of the
operator T restricted to the intervals (−∞, 0] and [0,∞), respectively. Moreover, let the 2×2
symmetric matrix P(u) be defined as follows:

P(u) :=
(−κ� − mer�� −λ��

−λ�� −κ� + mer��

)
.

A straightforward computation shows that

P0 := lim
u→+∞ P(u) =

(−me 0
0 me

)
, P1 := lim

u→−∞ P(u) =
(−κ�H 0

0 −κ�H

)
.

Let µ
(i)
± with i = 0, 1 denote the eigenvalues of P0 and P1, respectively. Since µ

(0)
− = −me,

µ
(0)
+ = me and µ

(1)
− = µ

(1)
+ = −κ�H = −κ/(2M) theorem 16.5 in [17] implies that

σe(T+) ∩ (−me,me) = ∅, σe(T−) ∩ ∅ = ∅.

Notice that the applicability of theorem 16.5 continues to hold also for the case me = 0. Let
d ∈ (0,∞). A simple computation shows that for u → +∞

P(u) − P0 =
(

meM −λ

−λ −meM

)
1

u
+ O

(
1

u2

)
.

Hence, it follows that

lim
x→+∞

1

x

∫ x

d

du|P(u) − P0| = 0

and theorem 16.6 in [17] implies that

σe(T+) ⊃ (−∞,me] ∪ [me,∞).

Let δ ∈ (−∞, 0). In the limit r → M we have

P(r) − P1 = 1

M

(
�H (κ − meM) −λ/(2M)

−λ/(2M) �H(κ + meM)

)
(r − M) + O((r − M)2)

and

du

dr
= 1 +

2M

r − M
+

2M2

(r − M)2
,

1

u
= − 1

2M2
(r − M) + O((r − M)2).
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Now, it can be easily checked that

lim
y→−∞

1

y

∫ δ

y

du|P(u) − P1| = lim
r→M

1

y(r)

∫ δ̃

r

d̃r
du

d̃r
|P (̃r) − P1| = 0

and theorem 16.6 implies that σe(T−) ⊃ R. Finally, the remark to theorem 11.5 in [17] yields
that

σe(T ) = σe(T−) ∪ σe(T+) = R.
�

From theorem 3.1 it results that σe(H) = R = σ(H). Since for the discrete spectrum
σd(H) = σ(H)\σe(H) we find that σd(H) = ∅. Hence, the absolutely continuous spectrum
of H is simply σac(H) = R and the purely point spectrum is empty, i.e. σpp(H) = ∅.
On the other hand the Dirac Hamiltonian in the extreme Kerr metric admits an eigenvalue
�k = −κ�H for |ω| < me and for each κ = k + 1/2 with k ∈ Z [19]. Hence, the point
continuous spectrum σpc(H) is not empty since σpc(H) = {�k} for k fixed. Thus we can
conclude that such an eigenvalue is embedded in the continuous spectrum of H. Moreover, the
Lebesgue decomposition theorem leads to a decomposition of the spectral measure µ into the
sum of a part absolutely continuous with respect to Lebesgue measure and a singular part, i.e.
µ = µac + µs and the Radon–Nikodym theorem implies that the absolutely continuous part
µac,ω of the spectral measure may be described by

µac,ω =
∫

R

dωf (ω)

with f (ω) a density function defined as f (ω) = dρ(ω)/dω for almost all ω ∈ R and ρ(ω) the
spectral function. Since the spectral measure of the operator H coincides with the Lebesgue
measure on the spectrum of H (see theorem 3.1, p 447 and ch. VI, section 5 in [20]) the
singular component µs,ω is supported on the set of eigenvalues of the operator H. These may
be characterized as the points of discontinuity of the spectral function ρ(ω), i.e. points where
ρ(ω) has an isolated jump. Without loss of generality we can choose µs,ω = H̃ (ω − �k)

where H̃ is the Heaviside function. Taking into account that in the distributional sense the
derivative of the Heaviside function gives rise to a Dirac-delta, we find that (2.17) becomes

ψ(x) =
∫

R

dω
∑

j∈Z\{0}

∑
k∈Z

〈
ψkj

ω

∣∣ψω

〉
ψkj

ω (x) +
∑

j∈Z\{0}

∑
k∈Z

〈
ψ

kj

�k

∣∣ψ�k

〉
ψ

kj

�k
(x) (3.4)

with

ψkj
ω (x) =

⎛⎜⎜⎜⎜⎜⎝
R

kj
ω,−(u)Y

kj
ω,−(ϑ, ϕ)

R
kj
ω,+(u)Y

kj
ω,+(ϑ, ϕ)

R
kj
ω,+(u)Y

kj
ω,−(ϑ, ϕ)

R
kj
ω,−(u)Y

kj
ω,+(ϑ, ϕ)

⎞⎟⎟⎟⎟⎟⎠ , ψ
kj

�k
(x) =

⎛⎜⎜⎜⎜⎜⎝
R

kj

�k,−(u)Y
kj

�k,−(ϑ, ϕ)

R
kj

�k,+(u)Y
kj

�k,+(ϑ, ϕ)

R
kj
ωk,+(u)Y

kj
ωk,−(ϑ, ϕ)

R
kj
ωk,−(u)Y

kj
ωk,+(ϑ, ϕ)

⎞⎟⎟⎟⎟⎟⎠
where R

kj

�k,± and Y
kj

�k,± are the radial and angular eigenfunctions satisfying (2.7) and (2.8)
with ω = �k , respectively. For more details on such eigenfunctions we refer to theorem 3.6
in [19]. Finally, since the Hamiltonian H is self-adjoint the spectral theorem implies that for
every ψ ∈ C∞

0 (�)4

ψ(t, x) =
∫

R

dω eiωt
∑

j∈Z\{0}

∑
k∈Z

〈
ψkj

ω

∣∣ψω

〉
ψkj

ω (x) +
∑

j∈Z\{0}

∑
k∈Z

ei�kt
〈
ψ

kj

�k

∣∣ψ�k

〉
ψ

kj

�k
(x). (3.5)

The above expression is the integral representation of the Dirac propagator in an extreme Kerr
manifold.
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4. Conclusions

In this paper we have derived an integral representation for the propagator of a massive
fermion in the extreme Kerr geometry. Such a representation followed quite immediately by
proving the completeness of the Chandrasekhar ansatz for the Dirac equation in an extreme
Kerr manifold. In the future starting with a refined analysis of the Dirac propagator (3.5) we
reserve to derive precise formulae for the probabilities that a massive Dirac particle disappears
into the extreme Kerr black hole, forms a bound state with it or escapes at infinity for smooth
initial data with compact support outside the event horizon and bounded angular momentum.
Formulae for probabilities concerning the evolution of a Dirac particle have been derived in
the non-extreme case in [21].
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